
NeuroImage: Clinical 4 (2014) 481–487 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contents lists available at ScienceDirect 

NeuroImage: Clinical 

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / y n i c l 

Depressive symptoms and neuroanatomical structures in 

community-dwelling women: A combined voxel-based 

morphometry and diffusion tensor imaging study with tract-based 

spatial statistics 

Yayoi K. Hayakawa 

a , c , 1 , * , Hiroki Sasaki a , Hidemasa Takao 

a , Naoto Hayashi b , Akira Kunimatsu 

a , Kuni 
Ohtomo 

a , Shigeki Aoki c 

a Department of Radiology, University of Tokyo Hospital, Tokyo, Japan 
b Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan 
c Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan 

a r t i c l e i n f o 

Article history: 

Received 29 November 2013 

Received in revised form 5 March 2014 

Accepted 5 March 2014 

Keywords: 

Anterior cingulate gyrus 

Voxel-based morphometry 

Diffusion tensor imaging 

Tract-based spatial statistics 

Subclinical depression 

a b s t r a c t 

Depressive symptoms, even at a subclinical level, have been associated with structural brain abnormal-

ities. However, previous studies have used regions of interest or small sample sizes, limiting the ability

to generalize the results. In this study, we examined neuroanatomical structures of both gray matter and

white matter associated with depressive symptoms across the whole brain in a large sample. A total of 810

community-dwelling adult participants underwent measurement of depressive symptoms with the Cen-

ter for Epidemiologic Studies Depression Scale (CES-D). The participants were not demented and had no

neurological or psychiatric history. To examine the gray and white matter volume, we used structural MRI

scans and voxel-based morphometry (VBM); to examine the white matter integrity, we used diffusion tensor

imaging with tract-based spatial statistics (TBSS). In female participants, VBM revealed a negative correlation

between bilateral anterior cingulate gray matter volume and the CES-D score. TBSS showed a CES-D-related

decrease in fractional anisotropy and increase in radial and mean diffusivity in several white matter regions,

including the right anterior cingulum. In male participants, there was no significant correlation between

gray or white matter volume or white matter integrity and the CES-D score. Our results indicate that the

reduction in gray matter volume and differences in white matter integrity in specific brain regions, including

the anterior cingulate, are associated with depressive symptoms in women. 
c © 2014 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license

( http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ).
 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Major depressive disorder is associated with decreased brain vol-

ume or changes in white matter integrity, particularly in frontal areas

( Abe et al., 2010 ; Bremner et al., 2002 ; Egger et al., 2008 ; Kiesepp ̈a et

al., 2010 ; Shimony et al., 2009 ) and in medial temporal areas such as

the hippocampus ( Abe et al., 2010 ; Campbell et al., 2004 ; Videbech

and Ravnkilde, 2004 ). Recently, depressive symptoms that do not
Abbreviations: CES-D, Center for Epidemiologic Studies Depression Scale; DTI, dif- 

fusion tensor imaging; FA, fractional anisotropy; MD, mean diffusivity; RD, radial dif- 

fusivity; TBSS, tract-based spatial statistics; VBM, voxel-based morphometry. 
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Matsudo City, Chiba 271-0077, Japan. 
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meet the criteria for major depression have received increased at-

tention. Understanding this preclinical state precisely is important

for preventing major depressive disorder ( Cuijpers et al., 2004 ). Sev-

eral previous reports have suggested that depressive symptoms at

a subclinical level have some of the same neural correlates as those

in major depression ( Hayakawa et al., 2013 ; Lavretsky and Kumar,

2002 ; Lyness et al., 1999 ). However, most previous studies on this

issue have been based on regions of interest or small sample sizes,

limiting the ability to draw firm conclusions from them. 

The purpose of this study was to investigate brain structures as-

sociated with depressive symptoms in gray and white matter across

the whole brain in a large sample. We used voxel-based morphome-

try (VBM) and diffusion tensor imaging (DTI) with tract-based spatial

statistics (TBSS). Both VBM and TBSS enable the global analysis of

brain volume or white matter integrity without a priori identifica-

tion of a region of interest. White matter integrity was represented

by four DTI measures: fractional anisotropy (FA), mean diffusivity
 open access article under the CC BY-NC-ND license ( http: // creativecommons.org / 
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MD), axial diffusivity (AD), and radial diffusivity (RD). The diffusivity 

f water molecules in white matter is more limited in the direction 

f neuronal fibers. Although the histological reasons for this limita- 

ion are not well understood, FA is believed to reflect the degree of 

yelination and axonal density ( Arfanakis et al., 2002 ; Harsan et al., 

006 ; Song et al. , 2002 , 2003 ). Recently, more discrete analysis of the 

D and RD has provided potential measures of the mechanisms that 

nderlie white matter pathology and disease processes ( Song et al., 

002 ; Wozniak and Lim, 2006 ). AD reflects diffusivity parallel to ax- 

nal fibers. Increases in AD are thought to reflect pathology of the axon 

tself, such as from trauma or ischemic changes ( Song et al., 2003 ). 

D reflects diffusivity perpendicular to axonal fibers and appears to 

e more strongly correlated with myelin abnormalities—either dys- 

yelination or demyelination—such as in multiple sclerosis ( Song et 

l., 2005 ). All analyses were performed not only for all participants 

ombined but also for each sex separately, because there is evidence 

hat the brains of males and females with major depression have 

tructural differences ( Lorenzetti et al., 2009 ), suggesting that the sex 

ifference may be present even at the subclinical level. In support of 

his hypothesis, in our preliminary study of 21 community-dwelling 

dults ( Hayakawa et al., 2013 ), we found brain structural differences 

etween subjects with subclinical depression and controls only in 

emales. 

. Materials and methods 

.1. Participants 

The participants were 1148 volunteers who underwent private 

ealth screening at the University of Tokyo hospital from 2008 to 

009. Depressive symptoms were measured with the Center for Epi- 

emiologic Studies Depression Scale (CES-D; Radloff, 1977 ) during a 

isit to screen for depression. The CES-D (range, 0–60) is a widely 

sed 20-item self-report inventory that assesses the frequency and 

everity of depressive symptoms experienced in the past week. Ade- 

uate validity of the CES-D in elderly community-dwelling adults has 

een demonstrated ( Haringsma et al., 2004 ). 

The exclusion criteria were missing data from the CES-D or mini- 

ental state examination (MMSE); past or current history of neu- 

opsychiatric disorders, including major depression diagnosed with 

he Diagnostic and Statistical Manual for Mental Disorders IV criteria; 

entral nervous system disease; serious head trauma; or medication 

ith antipsychotic drugs. Two trained neuroradiologists (one with 

 years, and the other with 10 years of experience) reviewed all scans 

including T2-weighted, fluid-attenuated inversion recovery images 

nd magnetic resonance angiography) and excluded participants who 

ad gross abnormalities such as infarct, hemorrhage, brain tumor, or 

neurysm. Participants with a Fazekas score of 3 (irregular periven- 

ricular hyperintensity extending into the deep white matter) were 

lso excluded ( Fazekas et al., 1987 ). 

The ethical committee of our institute approved this study. After a 

omplete explanation of the study was provided to each participant, 

ritten informed consent was obtained. 

.2. Image acquisition 

MRI data were obtained on two 3 T Signa HDx scanners (GE Medical 

ystems, Milwaukee, WI, USA) of the exact same model with an 8- 

hannel brain phased-array coil. For the VBM analysis, T1-weighted 

mages were acquired by using three-dimensional spoiled-gradient 

ecalled acquisition in the steady state (3D SPGR) in 124 axial slices 

repetition time: 6.4 ms; echo time: 2.0 ms; flip angle: 151; field 

f view: 250 mm; slice thickness: 1 mm with no gap; acquisition 

atrix: 256 × 256; number of excitations: 0.5). The voxel dimensions 

ere 0.977 × 0.977 × 1.0 mm. For the DTI analysis, diffusion tensor 

mages were acquired by using a single-shot spin-echo echo-planar 
sequence in 50 axial sections (repetition time: 13,200 ms; echo time: 

62 ms; field of view: 288 mm; slice thickness: 3 mm with no gap; 

acquisition matrix: 96 × 96; number of excitations: 1). Diffusion 

weighting was applied along 13 noncollinear directions with a b-value 

of 1000 s / mm 

2 , and a single volume was collected with no diffusion 

gradients applied (b = 0). The reconstructed voxel dimensions were 

1.125 × 1.125 × 3.0 mm. Parallel imaging (array spatial sensitivity 

encoding technique) was used with an acceleration factor of 2.0. 

2.3. Image processing 

2.3.1. VBM analysis 

All 3D SPGR images were processed and examined us- 

ing the Statistical Parametric Mapping version 8 soft- 

ware (Wellcome Department of Imaging Neuroscience 

Group, London, UK; http: // www.fil.ion.ucl.ac.uk / spm ), 

where we applied VBM implemented in the VBM8 toolbox 

( http: // dbm.neuro.uni-jena.de / vbm.html ) with default parameters 

in MATLAB 7.7.0.471 (The MathWorks, Natick, MA, U.S.A.) running on 

a Windows computer. A ‘nonlinear only ’ modulation was performed 

on all images during spatial normalization so that values in resultant 

images are expressed as volume corrected for brain size. The resultant 

modulated images were smoothed with a Gaussian kernel of 8 mm 

(full width at half maximum). 

2.3.2. DTI analysis 

We performed an unbiased whole-brain TBSS analysis ( Smith 

et al., 2006 ), which is part of FSL (FMRIB software library) 4.1 

( http: // www.fmrib.ox.ac.uk / fsl ) ( Smith et al., 2004 ). First, the raw 

diffusion data were corrected for eddy current distortion and head 

motion by using FDT (FMRIB’s Diffusion Toolbox) 2.0 ( Smith et al., 

2004 ) and corrected for spatial distortion due to gradient nonlin- 

earity by using grad unwarp ( Jovicich et al., 2006 ). Following brain 

extraction by using BET2.1 ( Smith, 2002 ), FA, MD, AD, and RD maps 

were created by fitting a tensor model to the diffusion data by using 

FDT. The FA data of all participants were then aligned into Montreal 

Neurological Institute (MNI) 152 space by using FNIRT 1.0 ( Smith et 

al., 2004 ), which uses a b-spline representation of the registration 

warp field. The FMRIB58 FA standard-space image was used as the 

target. Next, a mean FA image was generated and thinned to create a 

mean FA skeleton, which represents the centers of all tracts common 

to the group. The mean FA skeleton image was thresholded at an FA 

value of 0.2 to prevent inclusion of nonskeleton voxels. The aligned 

FA data of each participant were then projected onto this skeleton. 

The MD, AD, and RD data were also aligned into MNI 152 space and 

projected onto the mean FA skeleton by using the FA data to find the 

projection vectors. 

2.4. Statistical analysis 

Relationships between four variables, CES-D, sex, age, and MMSE 

score, were tested by Pearson product moment correlation for all 

participants in the VBM analysis group and all participants in the 

TBSS analysis group. 

2.4.1. VBM analysis 

We performed voxel-wise correlation analyses by using the multi- 

ple regression function of SPM8 for all participants combined and for 

each sex separately. The CES-D score was treated as a covariate of in- 

terest. As nuisance variables, individual values for sex, age, and MMSE 

score were included for analysis of all participants combined, and age 

and MMSE for analysis of each sex. Two linear contrasts (1, −1) were 

made for positive and negative correlations, respectively. The signif- 

icance level was set at family-wise error (FWE)-corrected P < 0.05. 

http://www.fil.ion.ucl.ac.uk/spm
http://dbm.neuro.uni-jena.de/vbm.html
http://www.fmrib.ox.ac.uk/fsl
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Table 1 

Participant characteristics. 

All Men Women P 

Mean SD Range Mean SD Range Mean SD Range 

Participants in the VBM analysis 

N 792 523 269 

Age 55.3 9.8 23–84 55.3 9.7 23–84 55.2 9.9 24–81 n.s. 

MMSE 29.1 1.1 24–30 29.1 1.1 24–30 29.2 1.0 24–30 n.s. 

CES-D 4.2 5.1 0–48 3.8 4.7 0–48 5.1 5.7 0–44 < 0.01 

Participants in the TBSS analysis 

N 806 535 271 

Age 55.3 9.9 23–84 55.4 9.9 23–84 55.3 10.0 24–81 n.s. 

MMSE 29.1 1.1 24–30 29.1 1.1 24–30 29.2 1.0 24–30 n.s. 

CES-D 4.3 5.1 0–48 3.8 4.8 0–48 5.1 5.7 0–44 < 0.01 

MMSE: mini-mental state examination; CES-D: Center for Epidemiologic Studies Depression Scale. n.s., not significant; P : two-sample t -test for men vs. women. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Pearson product moment correlations between variables. 

CES-D Sex Age 

In the VBM analysis group (792 participants) 

Sex −0.123 * 

Age −0.103 * 0.006 

MMSE −0.009 −0.051 −0.279 * 

In the TBSS analysis group (806 participants) 

Sex −0.117 * 

Age −0.119 * 0.001 

MMSE −0.013 −0.052 −0.279 * 

MMSE: mini-mental state examination; CES-D: Center for Epidemiologic Studies De- 

pression Scale. 

Sex is a dummy variable (female = 0, male = 1). 
∗P < 0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.2. DTI analysis 

Voxel-wise analyses of the skeletonized data were performed by

using permutation-based, voxel-wise nonparametric testing as im-

plemented in the randomize tool of FSL ( Nichols et al., 2002 ). We

identified areas in which FA, MD, AD, or RD was significantly corre-

lated with the CES-D score. Sex and age were included as covariates for

analysis of all participants combined, and age for analysis of each sex.

Both positive and negative contrasts were tested with 5000 permu-

tations. We used threshold-free cluster enhancement ( Smith et al.,

2009 ) as implemented within randomize, which provides the abil-

ity to perform cluster-based inferences without setting an arbitrary

cluster-forming threshold. Voxel-wise statistical inference was made

on the resulting statistical image, and the significance level was set at

P < 0.05, corrected for the FWE rate. 

3. Results 

3.1. Participants 

Of the 1148 volunteers who were screened, 338 met the exclusion

criteria. Among the images from the resulting 810 participants, 18 3D

SPGR images and 4 diffusion tensor images were excluded because of

poor quality or artifacts. Images were therefore analyzed with VBM

for 792 participants and with TBSS for 806 participants. There were no

sex differences in age or MMSE in either group ( Table 1 ). However, the

CES-D score was significantly different between males and females in

both analysis groups, and females were more depressed than males. 

3.2. Relationships between CES-D and sex, age, and MMSE score 

Table 2 shows Pearson product moment correlations between

variables in each analysis group. The CES-D score was negatively cor-

related with sex and age. The sex is a dummy variable (female = 0,

male = 1), so the negative correlation indicates that female partic-

ipants tend to have higher CES-D scores. We found no correlation

between CES-D and MMSE score. We found a negative correlation

between the age and MMSE score. 

3.3. VBM analysis of gray and white matter volume associated with 

CES-D 

There was no significant correlation between gray matter volume

and CES-D score for all participants combined. In the separate analy-

sis of each sex, significant negative correlations between gray matter

volume and the CES-D score were seen in the right rostral anterior

cingulate gyrus and bilaterally in the dorsal anterior cingulate gyri in

female participants after adjusting for age and MMSE score ( Table 3 ).

Fig. 1 shows the extent of gray matter regions that had a volume re-

duction correlated with the CES-D score in female participants. There

was no significant correlation between gray matter volume and the
CES-D score in male participants. We observed no significant correla-

tion between white matter volume and the CES-D score. 

3.4. DTI analysis of white matter integrity associated with CES-D 

In the analysis of all participants combined, there were no sig-

nificant correlations between DTI measures and CES-D score. In the

separate analysis of each sex, TBSS showed clusters of significant

FA reduction, MD increase, and RD increase that correlated with the

CES-D score in female participants ( Fig. 2 ). 10.3% of all skeleton vox-

els showed significant negative associations between FA and CES-D,

and 16.5% and 20.2% showed positive associations with RD and MD,

respectively. The clusters of FA reduction included deep white matter

in the bilateral frontal, temporal, and occipital lobes, external capsule,

a large portion of the corpus callosum, right anterior cingulate, left

fornix, and left uncinate. The clusters of RD increase were in almost

the same structures as the clusters of FA reduction. The clusters of MD

increase included deep white matter in the bilateral frontal, temporal,

occipital, and parietal lobes, external capsule, superior longitudinal

fasciculus, a large portion of the corpus callosum, right anterior limb

of the internal capsule, left anterior cingulate, left fornix, and left un-

cinate. The cluster tool in FSL revealed that a largest cluster including

the right dorsal anterior cingulum ( Fig. 3 ) showed a significant reduc-

tion in FA ( P -value at the peak voxel = 0.003, cluster size = 14,170)

and an increase in RD ( P -value at the peak voxel = 0.002, cluster

size = 20,391) in association with the CES-D score. There were no

significant clusters of increased FA, reduced MD, or reduced RD. AD

showed no significant correlation with the CES-D score. There was no

significant correlation between DTI measures and the CES-D score in

male participants. 
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Table 3. 

Areas with significant gray matter volume reduction that correlated with depressive symptoms in female participants. 

Anatomical location Talairach coordinates P Cluster size 

x y z (FWE corrected) 

Right rostral anterior cingulate gyrus 1 31 22 0.029 846 

15 32 21 

10 28 15 

Left dorsal anterior cingulate gyrus −1 4 34 0.037 785 

Right dorsal anterior cingulate gyrus 7 0 34 

Fig. 1. Results from multiple regression in female participants with a threshold of P < 0.001 (uncorrected data). Gray matter volumes in the right rostral anterior cingulate gyrus 

(a) and bilateral dorsal anterior cingulate gyri (b) were negatively correlated with depressive symptoms ( P < 0.05, FWE-corrected, cluster level). Cluster locations, sizes, and 

significance values are shown in Table 2 . R and L indicate right and left, respectively. Color scale (0–4) represents t values. 
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. Discussion 

To our knowledge, this is the first report to simultaneously study 

rain volume and white matter integrity associated with depressive 

ymptoms in a large sample. We found statistically significant results 

nly in the analysis of female participants and not in all participants 

ombined or in male participants. The gray matter volume in the right 

ostral anterior cingulate and bilateral dorsal anterior cingulate gyrus 

ecreased in association with increased depressive symptoms. There 

ere white matter regions in which FA was negatively correlated 

ith depressive symptoms. The CES-D score in most of the regions 

howed significant positive correlations with RD and MD. 

.1. The anterior cingulate gyrus and depressive symptoms 

Volume reduction in the anterior cingulate gyrus has been re- 

orted in major depression ( Botteron et al., 2002 ; Caetano et al., 2006 ; 

orenzetti et al., 2009 ). Several studies of community-dwelling popu- 

ations revealed regional brain volume reductions in the anterior cin- 

ulate gyrus associated with depressive symptoms ( Boes et al., 2008 ; 

otson et al., 2009 ). Boes et al. (2008) revealed volume reduction in 

he rostral anterior cingulate cortex of boys (but not girls) with sub- 

linical depressive symptoms, suggesting that the rostral anterior cin- 

ulate cortex may act as a biological marker of vulnerability to, or as a 

rait marker of, depression. Moreover, some personality traits, such as 

arm avoidance, are known to be risk markers for major depression 

nd have relationships with anterior cingulate volume ( Grucza et al., 

003 ; Pujol et al., 2002 ). The present study, along with the previous 
reports, indicates that anterior cingulate volume reduction is asso- 

ciated with subclinical depressive symptoms. This is consistent with 

the hypothesis that this area is associated with vulnerability or future 

progression to major depression. 

In addition, using TBSS, we discovered a negative correlation be- 

tween FA and the CES-D score, and a positive correlation between RD 

and the CES-D score, in the right anterior cingulum in female partici- 

pants. Increased RD reflects demyelination of axons in animal studies 

( Song et al., 2005 ). Although the anatomical underpinnings of RD in 

humans are not fully understood, when the TBSS results are combined 

with the VBM results, this study suggests that the volume reduction 

seen in the right anterior cingulate gyrus is the result of demyelina- 

tion and / or abnormal myelination of the underlying white matter. In 

the left anterior cingulum, there was a positive correlation between 

MD and depressive symptoms. By definition, the difference between 

MD and RD depends on AD. In this study, although AD showed no 

significant correlation with depressive symptoms, the slight but non- 

significant variance of AD may have influenced the difference between 

RD and MD. 

4.2. The white matter integrity and depressive symptoms 

Disruption of integrity in some white matter regions has recently 

been reported in major depression ( Abe et al., 2010 ; Kiesepp ̈a et al., 

2010 ; Shimony et al., 2009 ). Kiesepp ̈a et al. (2010) , using TBSS, sug- 

gested that FA is decreased in the left sagittal stratum, right cingulate 

gyrus, and posterior body of the corpus callosum in major depression. 

Fewer studies have focused on white matter integrity and subclini- 

cal depressive symptoms in healthy participants. As for individuals 
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Fig. 2. Correlation between FA, RD, MD, and the CES-D score as identified by TBSS in female participants. The statistical image was thresholded at P < 0.05 and overlaid on the 

mean FA map of all participants. There were significant negative correlations between FA and the CES-D score (blue–light blue), and positive correlations between RD as well as 

MD and the CES-D score (red–yellow). L indicates left. 
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Fig. 3. Blue voxels show the regions where FA was reduced in association with the 

CES-D score in female participants ( P < 0.05) overlaid on the mean FA skeleton (green 

voxels). The background image is the mean FA map of all participants. Arrows indicate 

the right dorsal anterior cingulate region (Talairach coordinates: x = 6, y = −13, z = 28). 

The same region was positively correlated with RD (not shown in this figure). A and P 

indicate anterior and posterior, and R and L indicate right and left, respectively. 
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t risk for depression, Huang et al. (2011) reported lower FA values 

n white matter tracts including the left cingulum in healthy adoles- 

ents at familial risk of unipolar depression than in controls. Some 

ersonality traits identified as predisposing factors for affective dis- 

rders have been reported to associate with white matter microstruc- 

ures in widespread brain areas ( Ayling et al., 2012 ; Bjørnebekk et al., 

013 ; Westlye et al., 2011 ). Bjørnebekk et al. (2013) demonstrated 

hat increased neuroticism is associated with decreased FA, as well as 

ncreased MD and RD in widespread regions of white matter. These 

egions include the long association fibers connecting the frontal, oc- 

ipital, parietal, and temporal lobes; tracts connecting orbitofrontal 

egions with limbic regions; fiber tracts connecting thalamic nuclei 

ith the frontal lobes; and cross-hemispheric pathways, including 

he corpus callosum. These white matter microstructures may un- 

erlie vulnerability to depression, and the present study suggests that 

idespread regions of white matter are also associated with depres- 

ive symptoms in community-dwelling women. The affected regions 

re broader than regions of volume reduction, suggesting that mi- 

rostructural changes in white matter precede reductions in brain 

olume. Note that we did not control for preclinical anxiety as a po- 

ential confound in this study. Because anxiety and depression are 

ighly correlated, the results of the current study could have been 

odulated by comorbid preclinical anxiety. A more detailed analysis 

f the potential effect of anxiety is an important direction for future 

esearch. 

.3. Sex difference 

In this study, depressive symptoms were associated with brain 

olume and white matter integrity only in female participants. One 

ossible explanation of this is that the sex difference per se influences 

he brain structure in major depression ( Frodl et al., 2002 ; Hastings et 

l., 2004 ) and even in subclinical depression. Another explanation is 

he heterogeneity of the participant’s characteristics: the depressive 

ymptoms measured by CES-D were statistically higher in women 

han in men. Therefore, the possibility remains that male participants 

ho have the same depressive symptoms will show the same pat- 

erns in brain structure as females. Additional evidence from a more 

omogeneous group is needed to examine this possibility. 
5. Conclusion 

By using both VBM and TBSS in a large group of community- 

dwelling participants, we have shown associations between brain 

structures and depressive symptoms in female participants. Our find- 

ings show that frontal–limbic structures, including the bilateral ante- 

rior cingulate gyrus, are associated with depressive symptoms even at 

a subclinical level. Moreover, they show that white matter structure 

is associated with depressive symptoms in widespread regions. 
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